利记sbobet

行业动态

聚焦行业动态,洞悉行业发展

真空熔炼炉向外传递的因素的三大要素
发布时间:2018-07-09   浏览:1384次

   根据温度场分布利记sbobet可知,真空熔炼炉整个温度场的分布主要取决于几个方面的约束。即材料的平均导热系数入,材料的平均密度P和平均比热熔度。

  影响真空熔炼炉温度向外传递的因素,包括以下3点:

  在该设计中,主要采用内热源形式。真空熔炼炉内部热源发热,温度由里至外传递。其强度大小直接影响炉内温度分布情况。可以看出,当内热源吼越高时,一定点的温度越高,同时一定温差(△T)的分布区域(r)越大。所以,在实际生产过程中,可以通过控制炉芯的表面负荷亦即炉芯功率控制炉内温度分布。

  反应料距炉芯的距离(△r),当炉芯功率一定时,即内热源的强度一定时,距离炉芯越远的反应料,温度越低,可能无法达到反应所需温度。距离真空熔炼炉炉芯越近,温度越高,越利于反应进行。

  另外,真空熔炼炉料的散热性能越好,内部热量向外流失越快,热量很轻易就损耗在反应料之外,使一定点的温度降低。但是,如果反应料的散热性能不好,则利于热量的汇聚,使得热量向外传递时间加长,有利于反应料对热量的吸收和反应地进行,提高一定点的温度。应都在高真空条件下(4~13Pa)进行,反应温度1200℃左右,芯温度很快就能达到所需值,因此反应时间的长短取决于反应料的厚度,即炉芯外围反应料到炉体保温层的距离。可以通过设计炉体尺寸控制供电时间。

1465348286821473.jpg


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归利记sbobet所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

05 August 2019
真空甩带炉熔炼介绍

真空甩带炉熔炼介绍

  真空甩带炉熔炼介绍   真空甩带炉在真空条件下利用电弧来加热和熔炼金属的熔炼方法。这种熔炼方法所使用的电极有自耗电极和非自耗电极两种。   自耗电极是由被熔炼材料(即炉料)制成,在真空甩带炉的熔炼过程中它逐渐消耗;而非自耗电极系利用钨等高熔点材料制成,在炉料熔炼过程中它基本上不消耗。采用自耗电极的真空电弧炉称自耗电极电弧炉,简称自耗炉;采用非自耗电极的真空电弧炉称非自耗电极电弧炉,简称非自耗炉。   现在,非自耗电极熔炼已较少使用,而自耗电极熔炼大量应用于生产实践中,成为二次重熔的主要手段之一。真空电弧熔炼的坩埚一般用铜制成,外面用水冷却,称为水冷铜结晶器。   真空甩带炉熔炼时,可以将自耗电极(被熔炼材料)接负极,水冷铜结晶器接正极,通电后两极间产生弧光放电,将电能转变成热能,产生高温使材料熔化。熔炼过程中液态金属熔滴通过高温弧区后落入金属熔池,并在水冷铜结晶器内凝固成锭。通过金属液与气相间以及熔池内发生的一系列物理化学反应,达到提高金属的纯净度,改善其结晶组织和性能的目的。   虽然真空甩带炉不受大气、耐火材料和铸模等的沾污;可以去除钢及合金中的气体和有害金属杂质;熔炼中夹杂物也可上浮去除一部分,并可改善夹杂物在合金中的分布及形态;水冷铜结晶器中的钢锭铸态组织比普通铸锭为好。   但真空甩带炉熔炼需预制电极,且钢锭表面较差。真空电弧熔炼可用来熔炼钛、锆、钨、钼等活泼金属、难熔金属以及它们的合金,也可用来熔炼高温合金及有特殊用途的钢和合金。

19 September 2022
石墨化炉在针状焦材料发展中有不可缺少的作用

石墨化炉在针状焦材料发展中有不可缺少的作用

  石墨化炉在针状焦材料发展中有不可缺少的作用  石墨化炉热处理过的针状焦作为一种新型炭材料,因其易于石墨化、电导率高、价格低廉、灰分低等优异特性,逐渐成为一种优质的锂离子电池负极材料wu,且已占据日本近60%的市场.近期,国内在针状焦的生产技术上取得了较大突破,实现了规模生产,但其用作锂离子电池负极材料的研究较少.  一般软炭(如沥青焦、石油焦等)经过2500?3000℃的石墨化炉热处理后,会转化为石墨结构,但该过程极其复杂,既涉及石墨微晶在径/轴向的有序排列、晶界的消失、晶体界面处C-C六圆环的形成、晶体的生长,还涉及石墨层边界处不饱和碳原子的催化反应、碳原子或气体分子的热震动、石墨微晶的各向异性特性、石墨层层间的范德华力等微观热力学或动力学行为.目前,热处理温度与材料石墨微晶参数之间的内在关系巳得到系统研究,而石墨化机理的基础研究较少.本工作以煤系针状焦为原料,在分析热处理温度对针状焦微结构的影响规律的基础上,深入研究了针状焦的石墨化机理及其用作锂离子电池负极材料的电极性能和储锂机制.  将煤系针状焦机械粉碎后,用。45岬筛网进行筛分,置入炭化炉,先以5°C/min的升温速率分别升温至700P、1000°C,1500°C,并标记为NC700、NC1000、NC1500;格样品置于高温石墨化炉,先以15-C/min的升温速率升至1500℃,再以7°C/min的升温速率升至2250℃、2800℃并恒温30tnin,降至室温后得到石墨化样品,相应标记为NC2250、NC2800。  在1500-2250℃的高温石墨化炉石墨化过程中,体系获得更大的能量,在表面能以及大兀健的作用下,石墨微晶沿轴向发生平行排列;同时,体系中碳原子的热震动频率增大,平行于平面网格方向的振幅增大,使得晶体平面上的位错线和晶界逐渐减少,并放出潜热。  随着石墨化炉石墨化温度的继续升高,碳的蒸发率以指数式上升,这时体系中充满各种碳原子或气体分子,且石墨微晶在径向的间距接近分子水平;在石墨层边缘碳的自催化以及界面能的推动力作用下,各种游离的碳原子与相邻石墨微晶的边缘碳发生反应,形成C-C六圆环;在范德华力作用下,石墨层的“褶皱”消失,并趋向平面结构,终形成利记sbobet有序的石墨化针状焦。针状焦经过2800℃的高温热处理后,终逐步转化成利记sbobet有序的石墨结构。